
MICRO-ROS:
ROS2 ON MICRO-
CONTROLLERS

OFERA project

EU Grant 780785

www.ofera.eu

http://www.ofera.eu

CR/AEX3 | 2019-10-31

© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Audience Check
Micro-ROS: ROS2 on microcontrollers

Disciplines:

 Computer science

 Electrical engineering

 Mechanical engineering

 Other?

Who has used an Arduino or similar maker board?

Who has written hardware drivers for ROS?

CR/AEX3 | 2019-10-31

© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Microcontrollers are everywhere
Micro-ROS: ROS2 on microcontrollers

 Typical applications

 Motor control

 Sensor interfaces (AD, post-processing)

‒ Incl. sensor fusion

 Driving displays, LEDs, etc.

 Low-latency real-time control

Characteristics

 Low power usage (up to battery operation for years)

 Very predictable execution times

 Hardware integration

 Many integrated I/Os (I²C, SPI, CAN, etc.)

 Sophisticated safety-rated versions available

CR/AEX3 | 2019-10-31

© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

BUT: Development totally disconnected
from ROS-based development

4

CR/AEX3 | 2019-10-31

© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Goals
Micro-ROS: ROS2 on microcontrollers

5

 Run nodes on microcontroller seamlessly

 Publish/subscribe/services just work

 Parameters/lifecycle/… just work

 Take advantage of hardware features

 Power saving

 Hard real-time scheduling

 Easy hardware access

 Developer Experience

 Build using ROS tools

 Same codebase and APIs wherever possible

 Challenges

 Resource use (RAM, CPU, Disk)

 Different build-systems, OS, community expectation

Firmware

MCU

Device (Sensor/Actuator)

ROS

Linux/Windows/Mac OS

MCP

Serial/Bus/Wireless..

Typical topology

optional

CR/AEX3 | 2019-10-31

© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Device Classes
Micro-ROS: ROS2 on microcontrollers

6

ROS2 Micro-ROS

Hardware X86, ARM Cortex-A, … ARM Cortex-M, ….

Resources >512 MB RAM, >8 GB Disk >100 KB RAM, >1 MB Flash

Communications Ethernet, 802.11 WiFi Serial, WPAN – 250 KBit - 1 MBit/s

Operating System Linux, Windows, MacOS RTOS (NuttX by default)

Middleware DDS variant (by default) XRCE-DDS (by default)

Middleware Abstraction RMW RMW

Client Support Library RCL RCL

Execution Layer RCLCPP / RCLPY / … RCL + RCLCPP

Executors Generic Micro-ROS custom

CR/AEX3 | 2019-10-31

© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Micro-ROS: ROS2 on microcontrollers
Ingredients

Ease of use

 Build system integration

Default configurations

Default hardware

 Looking for collaborators!

 Tutorials

Community demos

 Slack channel

Ready-to-use docker

containers

Performance & Predictability

 Executor performance

Deterministic execution

 System Modes

 Benchmarking tools

7

MCU-targeted capabilities

Middleware XRCE-DDS

Custom executors

 E.g., static ordering

MCU tracing and debugging

 Portability

 Transports extensible

CR/AEX3 | 2019-10-31

© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Differences between ROS 2 and Micro-ROS

micro-ROS: ROS 2 on microcontrollers

Predictable

execution

System

modes

Copyright © 2019 Robert Bosch GmbH

CR/AEX3 | 2019-10-31

© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

micro-ROS: ROS 2 on microcontrollers

Target Devices

Reference HW platform

 Cortex-M4 devices with ~100KB RAM

‒ Olimex STM32-E407

 Cortex-M0 investigated but no longer pursued

 3rd Party platforms

 Renesas is on track to support GR-ROSE

boards

 Sony has expressed interest in supporting their

SPRESENSE board

RTOS

 Default RTOS is NuttX

 Intel has expressed interest in working on

Zephyr support

Olimex STM32-E407STM32L1-DISCO

GR-ROSE

CR/AEX3 | 2019-10-31

© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Build System: Background
micro-ROS: ROS 2 on microcontrollers

10

RTOS´s are complete packages including

 Scheduling (of course)

 Networking

 Standard libraries (libc, libm, libstdc++) etc

 Tools, and many more things

RTOS´s are highly configurable

 Most things are turned off by default to save resources

 Every change can affect system headers

RTOS‘s have relatively sophisticated, diverse and complex build systems

Microcontrollers often build operating system and application into a single firmware image

 This includes all dependencies, e.g. ROS 2

 Everything is cross-compiled

CR/AEX3 | 2019-10-31

© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Micro-ROS Build Support
micro-ROS: ROS 2 on microcontrollers

11

 See https://github.com/micro-ros/micro-ros-build/micro_ros_setup/

 Features

 Creates the firmware workspace for you

‒ RTOS

‒ Apps

‒ Necessary ROS 2 packages

‒ Cross-compilation setup that avoids interference from already source ROS 2 host workspace

 Creates agent workspace for you

 Example: „ros2 run micro_ros_setup build_firmware.sh“

Upcoming work: Integrate as CMake macros for ease of use

https://github.com/micro-ros/micro-ros-build/micro_ros_setup/

CR/AEX3 | 2019-10-31

© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Executor Performance
micro-ROS: ROS 2 on microcontrollers

12

 The current SingleThreadedExecutor adds measurable overhead

 For some use-cases, just polling the middleware already consumes 20% of CPU

Nobleo has addresses this in

rclcpp PR 873

We‘ve also identified more

overhead in the rmw

implementations, this is current

work.

https://github.com/ros2/rclcpp/pull/873

HAND-OVER TO
EPROSIMA FOR
REMAINDER OF TALK

13

CR/AEX3 | 2019-10-31

© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

DDS meets MCUs: DDS-XRCE

micro-ROS: ROS 2 on microcontrollers

 OMG’s DDS-XRCE (DDS for eXtremely

Resource Constrained Environments)

brings DDS on MCUs

 Based on Client-Server architecture
 Power-Saving

 Stateless

 Agent acts on behalf of Clients (Low

resource devices) on the DDS global data

space.

Copyright © 2019 eProsima

CR/AEX3 | 2019-10-31

© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Micro XRCE-DDS

micro-ROS: ROS 2 on microcontrollers

 eProsima C99 (Client) / C++11 (Agent)

implementation of XRCE protocol

 Multiple and extensible transport support:

UDP/IP, TCP/IP, Serial … or create your

own!

 Low memory usage (Client library):
 Stack: ~2 KB

 Heap: 0 KB (only static memory)

 .Text (code in Flash): core: 64 KB +/- TCP

profile: 2 KB +/- UDP profile: 1 KB +/-

Serial profile: 5.5 KB …

 Agent library API: micro-ROS-Agent

 ROS 2
 Several success stories: Robotis,

Renesas.

 Crystal and Dashing enabled.

Open-source: https://github.com/eProsima/Micro-

XRCE-DDS/

https://micro-xrce-dds.readthedocs.io/en/latest/

Fast RTPS

Copyright © 2019 eProsima

https://github.com/eProsima/Micro-XRCE-DDS/
https://micro-xrce-dds.readthedocs.io/en/latest/

CR/AEX3 | 2019-10-31

© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Micro XRCE-DDS Client portability

micro-ROS: ROS 2 on microcontrollers

A) Clock dependency.

 Relative clock measurement. Crazyflie

timer registers e.g.

B) Platform transports.

 Simple pairs of functions required:
 Init/Close.

 Write/Read.

 Common platforms implementation

provided.

Platform

Micro XRCE-DDS

Clock Transport

Copyright © 2019 eProsima

CR/AEX3 | 2019-10-31

© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Drone demo

micro-ROS: ROS 2 on microcontrollers

● Visualisation

● Control application

● Drone application

● DDS-XRCE Agent

DDS-

XRCE

● DDS-XRCE Agent

micro-ROS

● thin_kobuki _driver

● DDS-XRCE Client

< 100 KB RAM

Crazyflie 2.1

● DDS-XRCE Client

DDS

Copyright © 2019 eProsima

CR/AEX3 | 2019-10-31

© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Status

Copyright © 2019 eProsima

Crystal Dashing Next

No executor LET executor

RMW Simple communication mechanisms. RMW configuration. Complete RMW Implementation.

Basic and nested type support, no arrays. Full type support.

NuttX firmware incorporated in build system. Incorporate new platforms to build system. e.g. FreeRTOS

Plain C API support (RCL). CPP API support (RCLPP) in some platforms.

Demos. Demos and more tutorials.

Ready to use dockers. ROS2 Packages.

CR/AEX3 | 2019-10-31

© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

 All open-sourced code at GitHub

 https://github.com/micro-ROS

 Web-site: micro-ros.github.io

 Slack micro-ros.slack.com

 ROS 2 Embedded Working Group

 ROS Discourse in Embedded category

 ROS 2 Embedded Design Page

 https://github.com/ros2/design/pull/197

Further information

micro-ROS: ROS 2 on microcontrollers

https://github.com/micro-ROS
https://micro-ros.github.io/
http://micro-ros.slack.com/
https://github.com/ros2/design/pull/197

