Workshop on Autonomous Systems Design (ASD2019)

Bringing the Next Generation Robot Operating System on Deeply Embedded Autonomous Platforms

Ralph Lange

Robert Bosch GmbH Corporate Sector Research and Advance Engineering Renningen, Germany ralph.lange@de.bosch.com Workshop on Autonomous Systems Design (ASD2019)

Bringing ROS 2 on Microcontrollers

Ralph Lange

Robert Bosch GmbH Corporate Sector Research and Advance Engineering Renningen, Germany ralph.lange@de.bosch.com

Bringing ROS 2 on Microcontrollers What is the Robot Operating System? (ros.org)

Bringing ROS 2 on Microcontrollers The ROS Equation

Plumbing

- Process management
- Communication
- Device drivers
- Data models
- Language-independence

Tools

- Visualization
- Simulation
- Data recording
- Monitoring

Capabilities

- Control
- Perception
- Planning
- Manipulation

The "ROS Equation" k is licensed under C

Ecosystem

- Shared development
- Robot models
- Documentation
- Exchange
- Market

Bringing ROS 2 on Microcontrollers Architectural Principles

- Basic entity: Nodes (components) which exchange messages
- Can be distributed across machines
- Standard communication patterns
 - Topics: Publish-Subscribe (1 n, uni-directional, async)
 - Services: Request-Response (n 1, bi-directional, sync+async)
 - Actions: Advanced Request-Response (1-1, multi-state)
- Nodes comprised of callables (functions), which are data- or time-triggered
 - Implemented in C++, Python, ...
 - Run-to-completion
- Further core functionalities: Parameters, coordinate transformation, diagnostics, ...

Bringing ROS 2 on Microcontrollers ROS goes for series development

Key features of ROS 2

- ► Data Distribution Service (DDS) as middleware
- ▶ Run multiple nodes in one process
- ► Node lifecycle
- Deterministic launch
- ► ROS core functionality implemented in C
- Real-time-ready core algorithms
- Support of Windows and MacOS
- Backed by Technical Steering Committee with Intel, Amazon, Microsoft, Bosch, Arm, Apex.Al, Toyota Research, TARDEC, LG Electronics, eProsima, Acutronic Robotics, ...

Bringing ROS 2 on Microcontrollers ROS is great for development on microprocessors ...

... but robots are networks of computing devices!

Bringing ROS 2 on Microcontrollers Why microcontrollers?

Image source: Bosch PowerTools GmbH, All rights reserved

Hardware access

- ► GPIOs, PWM generators, ...
- ► Buses such as CAN, UART, SPI I²C

Hard, low-latency real-time

Context switching in less than 100 cycles

Power saving

Linux single-board computer requires 10 to 100x more power than an MCU

Safety

Number of safety-certified RTOS available

Bringing ROS 2 on Microcontrollers EU project OFERA (Open Framework for Embedded Robot Applications)

Our mission: Bridge the gap between MCUs and larger processors by

- Seamless integration of MCUs with ROS 2
- ► Ease portability of ROS 2 code to MCUs
- Ensure long-term maintenance of micro-ROS stack

The OFERA project is funded by the European Union's Horizon 2020 research and innovation programme under grant agreement No 780785

Bringing ROS 2 on Microcontrollers New DDS-XRCE Standard

CLIENTS

Open-source at github.com/eProsima/Micro-XRCE-DDS

The OFERA project is funded by the European Union's Horizon 2020 research and innovation programme under grant agreement No 780785

- ► Data Distribution Service
- ► OMG standard since 2004

 DDS-XRCE for eXtremely
Resource
Constrained
Environments
... brings DDS on MCUs

 DDS-XRCE standard is advanced by OFERA partner eProsima

Bringing ROS 2 on Microcontrollers Architecture

Two types of APIs:

- 1. Plain C API based on rcl for embedded developers
- 2. C++ API implemented against rclcpp interfaces for typical ROS developer

The OFERA project is funded by the European Union's Horizon 2020 research and innovation programme under grant agreement No 780785

12 CR/AEE1-Lange | 2019-03-29

Bringing ROS 2 on Microcontrollers micro-ROS Client Library Features: System Modes

- Task Handling: Orchestration of the actual task, the straight-forward, error-free flow
- Contingency Handling: Handling of taskspecific contingencies, e.g., expectable retries and failure attempts, obstacles, low battery
- System Error Handling: Handling of exceptions, e.g., sensor/actuator failures

The OFERA project is funded by the European Union's Horizon 2020 research and innovation programme under grant agreement No 780785

Bringing ROS 2 on Microcontrollers micro-ROS Client Library Features: System Modes

14 CR/AEE1-Lange | 2019-03-29

Bringing ROS 2 on Microcontrollers micro-ROS Client Library Features: System Modes

- ► Introduces (sub-)systems hierarchy to ROS 2
- Abstraction for hierarchical configuration, called system modes
- Mode manager manages consistent, system-wide configuration
- See micro-ros.github.io/system_modes/

The OFERA project is funded by the European Union's Horizon 2020 research and innovation programme under grant agreement No 780785

15 CR/AEE1-Lange | 2019-03-29

Bringing ROS 2 on Microcontrollers micro-ROS Client Library Features: Predictable Execution

- First approach enables multiple executors per operating system process
- Executors can be configured individually using standard scheduling mechanisms
- Open-sourced prototype for ROS 2
- See micro-ros.github.io/real-time_executor/

The OFERA project is funded by the European Union's Horizon 2020 research and innovation programme under grant agreement No 780785

Bringing ROS 2 on Microcontrollers Community Use-Case: Kobuki with STM32 F4 Cortex-M4

ROS 2 (Crystal) running

- Visualization
- Keyboard control
- odometry to TF
- DDS <-> DDS-XRCE agent

DDS-XRCE over UDP

micro-ROS running - thin_kobuki_driver - DDS-XRCE client at less than 100 KB RAM

Preliminary version at github.com/micro-ROS/micro-ROS_kobuki_demo

The OFERA project is funded by the European Union's Horizon 2020 research and innovation programme under grant agreement No 780785

17 CR/AEE1-Lange | 2019-03-29

Bringing ROS 2 on Microcontrollers Further information

https://micro-ros.github.io/

+ Join discussion in ROS 2 Embedded SIG at discourse.ros.org/c/embedded

The OFERA project is funded by the European Union's Horizon 2020 research and innovation programme under grant agreement No 780785

18 CR/AEE1-Lange | 2019-03-29

