
ROS2 & DDS
ROS2

Borja Outerelo Gamarra
Senior Software Developer

borjaouterelo@eprosima.com www.eprosima.com

mailto:borjaouterelo@eprosima.com
http://www.eprosima.com/
http://www.eprosima.com/


Agenda

● ROS Concepts.

● From ROS to ROS2.

● DDS in ROS2.

● ROS2 Concepts.

● Example.

2



ROS Concepts

● ROS master:
– Centralized piece for ROS communications.
– Allows Nodes discovery.
– Register ROS Computation Graph. (peer-to-peer network of loosely 

coupled processes)

1 2 3



ROS Concepts

● Nodes:
– Process controlling a part of a Robot. (Laser, motors, planner …)
– Communicates between them.
– Developed using ROS client library.

● Parameter Server
– Centralized in the ROS master.
– Uses key-value representation.

● Messages
– Unit of communication.
– .msg files.



ROS Concepts

● Topics
– Stream of messages.
– Strongly typed by message type.
– Central part of communications: publish/subscribe.
– Transports: TCPROS/UDPROS.

● Services
– Request/Reply communication model Service <-> Client.
– RPC.
– .srv files.

● Bags
– Stores messages from a topic.
– Playback mechanism.



From ROS to ROS2

● New use cases: autonomous vehicles, multi-robot swarms and 
operating in distributed environments...

● Initially designed for single robot control with no real-time 
requirements and using reliable connections.

● ROS uses a centralised discovery. (Single point of failure) ROS 2 
is fully distributed including discovery.

● Is not just an API change it changed the underlying 
communications.



DDS in ROS2

● No reinvent the wheel!
– DDS implementations usually do not introduce dependencies.
– DDS is end-to-end vs build from multiple software -> dependencies
– Documented, formal specification and API.

● DDS API in OMG specification -> ROS2 is DDS vendor independent.
– Provide power users a choice point. ROS2 defaulted FastRTPS.

● DDS match ROS requirements
– Discovery.
– Message definition and serialization.
– Publish-subscribe transport.
– DDS-RPC.



DDS in ROS2

● ROS-like interface:
– DDS concepts: participant, subscriber, publisher.
– Topic-oriented.

● DDS discovery:
– Distributed discovery system.
– No need for a centralized system: ROS master. 

● +fault tolerant +flexible.
● Options for static discovery.

● DDS Quality of Service (QoS).
– Flexible.
– Communication control. Improved on some networks.



DDS in ROS2

● DDS IDL
– ROS 2.0 API works with the ROS .msg and .srv.
– Copy from .msg, .srv in memory representation to DDS messages.

● Serialisation step is worst.

● Services
– ROS 2 implementation on top of publish/subscribe DDS API + reliable 

QoS.
– DDS RPC -> OMG Standard.



DDS in ROS2

● Allows support of multiple languages:
– C DDS API -> bindings.
– C++ DDS API -> wrapper + bindings.

● DDSI-RTPS (DDS-Interoperability Real-Time Publish-Subscribe) 
protocol replace ROS’s TCPROS and UDPROS wire protocols 
for publishing/subscribe.



RO2 Concepts

● Architecture:



RO2 Concepts

● Same as in ROS:
– Nodes.
– Services.
– Publishers and subscribers.
– Messages.
– Topics.



Demo

1. Install ROS2: https://index.ros.org/doc/ros2/Installation/.
2. Install demo packages.
3. source /opt/ros/crystal/setup.bash

– This will set the environment with multiple tools.
● ros2 pkg list
● ros2 node list 
● ros2 topic list

– In another terminal, launch a node:
● ros2 run demo_nodes_cpp talker
● Now you can play with “ros2 node” and “ros2 topic” commands.

https://index.ros.org/doc/ros2/Installation/


Let's create our first package:

● Colcon is a helper build-tool: 
a. apt install python3-colcon-common-extensions

● ros2 pkg create command: 
a. --cpp-node-name
b. --dependencies rclcpp std_msgs

Demo



Demo

Let’s publish something:
#include "rclcpp/rclcpp.hpp"

class MinimalPublisher : public rclcpp::Node

{

public:

  MinimalPublisher()

  : Node("minimal_publisher"), count_(0)

  {

}

private:

size_t count_;

};



Demo

Let’s publish something:
#include "rclcpp/rclcpp.hpp"

#include "std_msgs/msg/string.hpp"

class MinimalPublisher : public rclcpp::Node

{

public:

  MinimalPublisher()

  : Node("minimal_publisher"), count_(0)

  {

publisher_ = this->create_publisher<std_msgs::msg::String>("topic");

}

private:

rclcpp::Publisher<std_msgs::msg::String>::SharedPtr publisher_;

size_t count_;

};



Demo

Let’s publish something:
#include "rclcpp/rclcpp.hpp"

#include "std_msgs/msg/string.hpp"

using namespace std::chrono_literals;

class MinimalPublisher : public rclcpp::Node

{

public:

  MinimalPublisher()

  : Node("minimal_publisher"), count_(0)

  {

publisher_ = this->create_publisher<std_msgs::msg::String>("topic");

auto timer_callback =

  [this]() -> void {

    auto message = std_msgs::msg::String();

    message.data = "Hello, world! " + std::to_string(this->count_++);

    RCLCPP_INFO(this->get_logger(), "Publishing: '%s'", message.data.c_str());

    this->publisher_->publish(message);

  };

timer_ = this->create_wall_timer(500ms, timer_callback);

}

private:

rclcpp::TimerBase::SharedPtr timer_;

rclcpp::Publisher<std_msgs::msg::String>::SharedPtr publisher_;

size_t count_;

};



Demo

Let’s publish something:

int main(int argc, char * argv[])

{

  rclcpp::init(argc, argv);

  rclcpp::spin(std::make_shared<MinimalPublisher>());

  rclcpp::shutdown();

  return 0;

}



Let's create our first package:

● Build using colcon:
– colcon build --packages-select <package-name>

● Source environment from install directory.
● ros2 run <package-name> <node-name>

● We can check it works in a different terminal with: 
– ros2 topic echo topic

Demo



This presentation has been created from the following original 
content:
● ROS2 design: https://design.ros2.org/
● ROS2 demos: https://index.ros.org
● Examples: https://github.com/ros2/examples

References

https://design.ros2.org/
https://index.ros.org/doc/ros2/Installation/
https://github.com/ros2/examples


Thank you!

www.eprosima.com

Borja Outerelo Gamarra
Senior Software Developer

borjaouterelo@eprosima.com

http://www.eprosima.com/
http://www.eprosima.com/
mailto:borjaouterelo@eprosima.com

