
micro-ROS: bringing
ROS 2 to MCUs

Francesca Finocchiaro - eProsima
November 12th, 2020

roscon.ros.org/world/2020

Overview

roscon.ros.org/world/2020

roscon.ros.org/world/2020

funded by

Open-source project,
now benefiting from a huge

participation from a growing
community!

https://micro-ros.github.io/

https://www.eprosima.com/

francescafinocchiaro@eprosima.com

Who are we?

https://micro-ros.github.io/
https://www.eprosima.com/

roscon.ros.org/world/2020

micro-ROS: puts ROS 2 onto microcontrollers!
A solution for creating ROS 2 nodes into embedded devices

Why micro-ROS?

roscon.ros.org/world/2020

Highlights
● Layer-compatible with ROS 2

● Integrated into ROS 2 ecosystem

● Allows to create a ROS 2 node with ~ all

functionalities

● Client/server logics

● Middleware transports fully customizable

● Runs on different RTOSes and MCUs

● Platform-versatile cross-compilation tools

● Benefits of full QoS support

● Now supporting Foxy

● A growing community!

Why micro-ROS?

roscon.ros.org/world/2020

ROS 2 micro- ROS

micro-ROS architecture

roscon.ros.org/world/2020

Micro XRCE-DDS: DDS for eXtremely Resource-Constrained Environments.

Clients - XRCE entities on low-resource consumption devices.

Agent - XRCE entity connected with DDS global data space. Acts on behalf of Clients in the DDS world.

Main features:

● Client-server
architecture

● Request-response
pattern

● Connection oriented

Middleware architecture

roscon.ros.org/world/2020

● Implemented using Micro XRCE-DDS middleware in lower layers

● Allows static configuration of memory resources

Micro XRCE-DDS
configurable parameters

Transport
[UDP, serial, custom] Agent IP Agent Port

Creation mode
[XML, Ref]

IP version
[IPv4 - IPv6]

Max History

Max Nodes

Max Publishers Max Subscriptions Max Clients Max Services Max Topics

Node name max length Topic name max lengthType name max length

micro-ROS
configurable
parameters

Configurability of these parameters allows preconfiguring the size of the library and tuning

the size of the buffer to the memory needed

RMW

roscon.ros.org/world/2020

ROS Client Support Libraries

C99 library:

provides utility functions for creating

nodes, publishers, subscribers &

redesigned executor [deterministic

and LET semantics, dynamic memory

allocation only at startup,

domain-specific scheduling]

RCL, RCUtils,
rosidl_typesupport

RCLCPP, RCLPY

App

RCL, RCUtils,
rosidl_typesupport

RCLC

App

Same as in ROS 2

(many functionalities not used)

Supported platforms

roscon.ros.org/world/2020

roscon.ros.org/world/2020

NuttX

Zephyr

FreeRTOS

Linux Windows

micro-ROS
Client

micro-ROS
Agent

NEW
!

Supported RTOSes

roscon.ros.org/world/2020

Officially supported HW...

Olimex LTD
STM32-E407 Crazyflie 2.1 drone

STM32L4
Discovery kit IoT ESP32-DevKitC-32E

Target: mid-range microcontrollers.

Currently supported:

● ARM-M4/M7 MCUs (STM32, i.MX RT …)

● Xtensa MCUs (ESP32)

Typical features:

● ~ 1MB of flash memory

● ~ 200 KB of RAM memory

● < 500 mA consumption

● General purpose input/output pins (GPIO)

● Communication peripherals: USB, Ethernet, SPI, UART, I2C,

CAN, etc

Supported HW

roscon.ros.org/world/2020

… + community-supported HW!

Olimex LTD
STM32-E407 Crazyflie 2.1 drone ST Nucleo F446ZE ST Nucleo H743ZI OpenCR 1.0

STM32L4
Discovery kit IoT ESP32-DevKitC-32E ST Nucleo F746ZG Teensy 3.2 Teensy 4.1

Supported HW

roscon.ros.org/world/2020

Porting new boards with Zephyr RTOS is
super-easy thanks to the huge amount of
boards already supported by The Zephyr
Project!

Compatibilities to be aware of:
● Memory resources
● Transports

To date: 264 in total!

Ease of porting new platforms

roscon.ros.org/world/2020

Recent integrations,
developments

and WIPs

roscon.ros.org/world/2020

The micro-ROS build system: now a two-tales story

Classic approach New complementary approach

micro-ROS build system

Zephyr FreeRTOS

NuttX

Olimex board

ST development IoT kit

ESP32

External build system

micro-ROS

. . . .

External build system

micro-ROS

. . . .

. . . .

Achieved by generating
standalone micro-ROS
library & headers

Giving the build system a twist

roscon.ros.org/world/2020

micro-ROS as a
Zephyr module

micro-ROS into
Arduino IDE

… and more are to come!

micro-ROS as an
ESP-IDF component

Giving the build system a twist

roscon.ros.org/world/2020

micro-ROS meets MoveIt 2!

roscon.ros.org/world/2020

Discovery mechanism flow

● Clients discovery call by

multicast on UDP

● Reachable Agents respond

providing IP & port

● Clients match with first available

Agent

Agent discovery

roscon.ros.org/world/2020

Graph support

Graph manager

● DDS participant scanning the network: provides

introspection capatbilities to user. ROS 2 topology

consumable by micro-ROS

● micro-ROS topology info available to ROS 2

roscon.ros.org/world/2020

P2P prototype

● Clients send info about themselves

on broadcast

● Clients can choose whether to

connect via the Agent or by P2P

[WIP]

● At present, P2P offers limited

set of functionalities

● Tried on:

WIP: P2P functionality

ESP32

roscon.ros.org/world/2020

Cameras

ESP32

Open-source platform - custom

hardware, firmware, software &

AI training - that combines neural
inference, depth vision, and feature
tracking.

Enables for embedded artificial
intelligence and spatial AI/CV.

WIP

micro-ROS on
DepthAI via ESP32
support: combining
embedded artificial

intelligence with
ROS 2 ecosystem!

+

WIP: micro-ROS goes AIoT!

roscon.ros.org/world/2020

Thanks for your
attention!

roscon.ros.org/world/2020

Q&A time

roscon.ros.org/world/2020

QoS
Two possibilities for entities creation:

● By XML (on Client) - default

● By reference (on Agent) - allows full use of QoS

Users can write custom QoS on the Agent’s side.

Each entity has its own label and the Client

creates the entities using this reference label.

Advantages of using creation by reference:

● Reduces memory consumption of micro-ROS

Client inside the MCU.

● Full set of DDS QoS available

roscon.ros.org/world/2020

Memory profiling

● Total memory consumed by
1 pub ~ 400 B

● Total memory consumed by
1 sub ~ 8700 B

Transport: UDP

Creation: by XML

RMW history = 4

MTU = 512 B

XRCE history = 4

roscon.ros.org/world/2020

Memory profiling

Overall memory:

● Static
● Stack

● Dynamic

Transport: UDP

Creation: by XML

RMW history = 4

MTU = 512 B

XRCE history = 4

roscon.ros.org/world/2020

Memory profiling

Transport: UDP

Creation: by XML

Comm stream: Reliable

RMW history = 4

MTU = 512 B

XRCE history = 4

roscon.ros.org/world/2020

Memory management: pub/sub

roscon.ros.org/world/2020

Memory management: services

