
micro-ROS:
a robotic framework
bridging the gap between resource
constrained and larger processing
units in robotic applications

Microcontrollers no
longer being inflexible
black boxes

Seamless
integration into
ROS 2 based
systems

Lowers market
entry barriers

Brings ROS
programming
interface to
resource-constrained
devices

Global open-source project under permissive licenses
Receives contributions from the world-wide ROS community
Well-aligned with the on-going development of ROS 2

micro-ros.github.io
Getting started • Tutorials • Concepts • Blog

github.com/micro-ROS
Source code • Issue tracking • Developers

discourse.ros.org and answers.ros.org
Tag your micro-ROS questions/discussions with #embedded

From 2018 to 2020, micro-ROS is backed by the EU research project OFERA (Open Framework
for Embedded Robot Applications). The OFERA partners (see above) initiated the development of
micro-ROS and maintain the core software packages.

micro-ROS Market

micro-ROS is contributing to the faster growth of a
competitive industry of small robots and robot
components manufacturers, enabling European
companies to rapidly deliver robotic products integrating
highly resource-constrained devices.

Why adopting it?
ROS interoperability
micro-ROS is joining forces with all the
capabilities of ROS by bringing the ROS APIs
to microcontrollers. Porting of advanced
application-level software (e.g., for
self-localization, obstacle avoidance)
is simplified.

Reduce development costs and risks
By integrating microcontrollers into ROS, the
developer can benefit from all ROS tools and
advanced introspection, diagnostics, runtime
configuration and monitoring features.

Faster time to market
micro-ROS is enabling rapid delivery
of robotic products that integrate highly
resource-constrained devices.

Wide community support
micro-ROS is enjoying a broad support from
the ROS community. It is accessing a large
base of users already working with the platform
and bringing to Europe a key feature of this big
robotic initiative.

Widening verticals adoption
micro-ROS redefines the boundaries of the
ROS ecosystem by extending the range of
applications (Industry 4.0, IoT, ...).

This project has received funding from
the European Union´s Horizon 2020
research and innovation programme under
grant agreement No 780785.

Transport
Robots_

Smart
homes_

Smart
Cities_

Agriculture
Robots_

Industrial
Robots_

Healthcare
Robots_

Service
Robots_

 Bringing all the benefits from
the ROS technology into

robotics product development

Accelerate the adoption of
robotics in multiple domains

 Increase development
efficiency

 Reduce costs

SPAIN GERMANY SWITZERLAND POLAND

Microcontrollers
in robotics
Most robots are networks of microcontrollers and larger microprocessors.
There are many reasons for the use of microcontrollers in robotics:

Hardware access
Microcontrollers
provide rich
input/output
capabilities including
GPIOs, AD
converters, and PWM
generators. They
feature hardware
support for
communication
buses such as CAN,
UART, SPI, or I²C.

Hard, low-latency
real-time
Real-time operating
systems (RTOS) for
microcontrollers
allow context
switching in less than
100 cycles - a
magnitude less than
with common
desktop operating
systems. Most RTOS
require only few
milliseconds to boot.

Power saving
Microcontrollers
consume 10 to 100x
less power than
single-board
computers for
desktop operating
systems. Many
microcontrollers
feature several
low-power sleep
modes.

Safety
There exists a rich
variety of
microcontrollers for
safety-critical
applications.
Similarly, a number of
safety-certified
RTOSs are available.

Microcontrollers
and ROS

The ROS community has tried to support
microcontrollers in the past and as part of the

redesigned upcoming release ROS 2. These
attempts unveiled various design choices in ROS
and ROS 2 that render such porting impossible.

These choices include the use of the DDS
middleware in ROS 2, which is not intended for

highly resource-constrained devices, the
non-consideration of power efficiency requirements

and the lack of advanced real-time scheduling
capabilities, amongst others.

This is, where micro-ROS comes into play ...

micro-ROS:
at a glance

What is the Robot Operating System?
ROS is a middleware, development framework and toolbox for robotics software development. It
has a huge, continuously growing and fast-paced community behind it and has probably become
the largest open-source initiative undertaking in robotics. Its main contributions are:

1. micro-ROS
is the robotic
framework that bridges
the gap between
resource constrained
and larger processing
units in robotic
applications.

2. micro-ROS
is compatible with the
Robot Operating
System (ROS 2), the
de facto standard for
robot application
development.

3. micro-ROS
empowers resource
constrained devices and
brings ROS 2 program-
ming interfaces into
them. This makes
resource constrained
devices first class
participants of the ROS
ecosystem, reducing the
cost and size of robots.

4. micro-ROS
enables the interopera-
bility that distributed
robotic systems
demand to exploit the
increasing overlap
between robotics,
embedded devices
and IoT.

micro-ROS features
and architecture

micro-ROS client library is an extension on
existing ROS 2 client library, RCL. micro-ROS
will add dedicated modules to the existing
approach adding concepts appealing to
microcontrollers such as:

• A new predictable execution model.
• A model-based approach for runtime

system configuration:

On the middleware layer micro-ROS is based
on OMG’s standard: DDS-XRCE, compared to

ROS 2 DDS base layer, micro-ROS
underlying middleware layer is:

Designed and created to bridge DDS
and embedded devices

Client-Server architecture.
Focused on low resource consumption.

Micro-ROS is focused on embedded devices and
more concrete, microcontrollers used with an

RTOS. The use of an RTOS:
Provide HW abstraction.

Provide already known APIs, like POSIX.
Use of tools to configure-build-deploy

firmwares.

Benchmarking of embedded environments is
also a point of interest for micro-ROS and

several benchmarking tools will be provided.

Plumbing
Process management
Communication
Device drivers
Data models
Language-independence

Tools
Visualization
Simulation
Data recording
Monitoring

Capabilities
Control
Perception
Planning
Manipulation

Ecosystem
Shared development
Robot models
Documentation
Exchange
Market

MICROCONTROLLER
LEVEL_

• A service oriented architectu-
re and communication
mechanisms to support the
assembly and orchestration of
robotic software components
as well as their interoperabili-
ty with hardware drivers.

• A rich set of tools to develop,
visualize, operate and
maintain robot applications.

• Multi-language support:
C++, Python, Java, C#,
JavaScript, Ruby, ...

• Ready-to-use software
components with functional
capabilities for robot
perception, control,
planning, navigation
and manipulation.

The most important differences of the
micro-ROS stack compared to standard

ROS 2 are on the lower layers:

micro-ROS uses a real-time operating
system (RTOS) and not a desktop

operating system like Linux. Currently,
micro-ROS supports NuttX and

FreeRTOS.

DDS-XRCE instead of standard DDS.

Apart of those layers, micro-ROS uses
ROS 2 core stack layers, granting

compatibility and ensuring long-term
maintenance.

Integrated motor drive Packaged sensor
component / Safety

module

 Power-ef�cient
infrastructure sensor

Ultra-light motion
controller

New to ROS? Start your journey at www.ros.org

Application
component

Application
component

Application
component

ROS 2
stack

on a
desktop

OS

ROS 2
Agent

uP

Ethernet,
Bluetooth,
Serial

C++ API
(rclcpp)

C API
ROS Client Support Lib (rcl)

ROS Middleware Interface (rmw)

Micro XRCE-DDS Middleware

POSIX

RTOS NuttX

microcontroller

RT
OS

Mi
dd

le
-

wa
re

Cl
ie

nt
li

br
ar

y

Be
nc
hm
ar
ki
ng

System
modes

Predictable
execution

Embedded
transform

+ Additional abstractions

Additional
drivers, ...

MICROCONTROLLER

